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Abstract--The front speed and the liquid saturation distribution in the condensate flow region have been 
examined for one-dimensional injection of dry steam into a lower temperature, dry porous medium with a 
constant inlet pressure. Existing models for the volumetric viscous and inertial forces are used along with 
an upstream region with an immobile liquid, which is followed by a two-phase region, a condensation 
zone, a liquid region, and a downstream noncondensable gas flow region. The down- and upflow (along 
and against gravity) are examined assuming a quasi-steady behavior. For downflow, the liquid region 
grows with the condensation front location. The asymptotic front speed is obtained in closed form for both 
the near-field regime, where the steam flow rate is high (i.e. deviation from a Darcy behavior is significant), 
and the far-field regime. For upflow, the liquid region gradually disappears, the liquid saturation dis- 
tribution in the upstream immobile region undergoes two transitions, and correlation expressions are found 
for the location of these transitions. An experiment is performed, and the experimental results confirm the 

predictions for both down- and upflows. 

1. INTRODUCTION 

When dry, saturated steam is injected into a dry 
porous medium, which is at a lower temperature, the 
steam condenses and the condensate may flow if the 
liquid saturation is larger than a threshold value 
needed for a continuous liquid phase (i.e. larger than 
an irreducible saturation Sir). The flow is driven by a 
combination of hydrostatic, capillary and externally 
applied pressures and opposed by retarding forces, 
which are modeled by a combination of the viscous 
Stokes (i.e. Darcy) and inertial (i.e. Ergun-type) terms. 
The steam supply is through a maintained pressure 
source, and, therefore, as elapsed time increases and 
a condensate is formed within the porous medium, 
the inlet steam flow rate decreases. The condensate 
may be present as an irreducible liquid saturation in a 
discontinuous state, as an immobile liquid saturation 
with a net balance between the driving forces, as a 
two-phase l iquid-vapor flow with a liquid saturation 
less than unity but larger than sir, or as a single-phase 
liquid flow (i.e. unity liquid saturation). 

The condensate front travels at a speed that depends 
on the distribution of the liquid saturation in the con- 
densate region. The prediction of the front location 
and the saturation distribution upstream of it requires 
the simultaneous evaluation of the transport (species, 
momentum, and thermal energy) and phase change 
(i.e. condensation). Because of the complexity of the 
analysis, generally various regions are defined within 
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which proper simplifications can be made. Also, the 
commonly used empirical models (including inertial 
force) describing momentum conservation contain 
viscous terms that are of a lower differential order 
(as compared to the more elaborate phasic-volume 
averaged models that resemble the Navier-Stokes 
equations) and do limit the vigor of the analysis by 
not satisfying all the boundary conditions. However, 
for one-dimensional flows, such as the one considered 
here, significant insight and predictive ability I have 
been obtained by using these empirical momentum 
equations and by defining subregions in the con- 
densate region with jumps across them in some Of the 
variables. 

Among the previous studies, the condensation of 
injected steam into a liquid saturated porous medium 
has been studied analytically [1-4, 6-8], numerically 
[9], and experimentally [5-8], as related to the 
enhanced oil recovery and the displacement of soil 
contaminants. Recently, the detailed mechanisms of 
the steam drive processes have been studied lusing 
a two-phase region model that includes hydrostatic, 
capillary and external pressures, and viscous and iner- 
tial forces [6, 7]. Under the condition of a constant 
mass flow rate of steam, the front speed has been 
predicted, and the effect of the gravity direction (with 
respect to the flow) on the front speed has beer~ eluci- 
dated over a wide range of system parameters [7]. In 
that case, the front speed remains constant, anff~ in the 
two-phase region far from the front, a zero capillary 
pressure gradient is assumed, leading to a minimum 
liquid saturation. 

In this study, under the condition of a constant inlet 
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N O M E N C L A T U R E  

Bo Bond number 
Cp specific heat [J kg ~ K ~] 
Ca capillary number 
CE Ergun coefficient 
D total axial diffusivity [m 2 s l] 
g gravitational constant [m s 2] 
Ailg heat of vaporization [J kg l] 
Ja Jakob number 
K absolute permeability [m 2] 
k conductivity [W m ~ K ~] 
ke effective conductivity [Wm ~ K ~] 
K, relative permeability 

volumetric rate of production [s-~] 
p pressure [Pa] 
Pc capillary pressure [Pal 
Pe~ liquid Pdclet number 
R radius of glass particle 
Re Reynolds number 
s liquid saturation 
S~m immobile liquid saturation 
s~r irreducible liquid saturation 
S scaled liquid saturation 
Sc critical scaled liquid saturation 
t time [s] 
T temperature [K] 
u superficial velocity [m s -l] 
uv condensation front velocity [m s-~] 
x axial location [m]. 

Greek symbols 
~ liquid diffusivity [m 2 s ~] 
6~ thickness of liquid region [m] 
61g thickness of two-phase region [m] 
~: porosity 

viscosity [kg m- t s ~] 
p density [kg m 3] 

surface tension [N m i]. 

Subscripts 
a air 
e exit 
F front 
g gas 
i initial 
ir irreducible 
1 liquid 
m modified 
s solid 
sat thermodynamic saturation state 
tr transition 
0 inlet 
1 first 
2 second. 

Superscript 
* dimensionless. 

pressure, the propagation of the condensation front 
into a dry porous medium is investigated theoretically 
both for downward and upward flows (relative to 
gravity). The saturation distribution within various 
predicted regions is examined and some closed-form 
and appropriate solutions for the front speed are 
found. Experiments are also performed using a packed 
column of spherical glass particles with down- and 
upflow of steam, with the results compared with those 
predicted. 

2. ANALYSIS 

Steam and condensate displace the noncondensable 
gas initially occupying the pore space. Based on exper- 
imental observations, an analysis of the phase change 
and two-phase flow will be made by defining various 
regions over which appropriate approximations are 
made. In the following, first a physical model for the 
phase change and two-phase flow is given. Then, the 
conservation equations and boundary conditions for 
each region are discussed and finally the required 
numerical integration is described. 

2.1. Physical model 
Figure 1 shows the model used for the downflow of 

steam with the anticipated axial distributions of the 

temperature, pressure and liquid saturation within the 
various defined regions. The porous medium is 
initially dry, i.e. the pore space is filled with air at a 
temperature T,, lower than the saturation temperature 
T~ (at atmospheric pressure). Four different regions 
are defined, namely, the upstream, followed by two- 
phase, liquid and downstream regions. The inlet 
pressure is P0, and the inlet thermodynamic quality is 
assumed unity. Steam condensation is assumed to 
occur at the condensation zone (of a negligibly small 
thickness) Xv located between the liquid and two- 
phase regions, in the liquid region, the liquid satu- 
ration is assumed as unity. In the two-phase region, 
the liquid saturation varies, both phases are mobile, 
and the capillary pressure is nonzero. No liquid 
motion is allowed in the upstream region. Although 
the condensation-front speed is not constant, under 
the condition of a constant inlet pressure, a quasi- 
steady state behavior is assumed through all the 
regions. This is justifiable when the change in front 
speed is small with respect to time and will be dis- 
cussed later. The volumetric viscous force for the flow 
is described by Darcy's law along with a deviation, 
which is the microscopic inertial force (the Ergun iner- 
tial term). The relative permeabilities in the viscous 
and inertial terms are prescribed functions of the 
scaled and absolute liquid saturations, respectively. 
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Fig. 1. Anticipated axial distributions of the temperature, pressure and liquid saturation, and a rendering 
of the various regions along the packed column (for the downflow). 

Furthermore, the gas, liquid and solid phases are 
assumed to be in local thermal equilibrium. The front 
is assumed to be stable and physical properties are 
assumed constant. 

2.2. Governin 9 equations 
The dimensionless, two-phase flow conservation 

equations for the liquid- and gas-phase mass and 
momentum, and for the thermal energy (under the 
assumption of local thermal equilibrium) are [10]: 

~s ~Caj 
~ B o ~  + ~ = ~* (1) 

Os * OCag 
- e B o ~ + y  ~ = n *  (2) 

Op* Bo, Ca , ( l  ] 
~ x * -  Bo Bo ~ + ~ /  (3) 

t~x* - Bo Bo +--~-r¢, ) (4) 

s - s .  (5 )  K~,=S 3 K~v=(1--S) 3 S=l_s,-~- 

K~li = s 6 K~gi = (1 --S)  6 (6) 

* t3T* 
[ ( I  - ~) + ~s(pc.) * + ~(1 - s) (pc.)~ ] Bo T f ;  

c3T* 
+ [sCal(pcp)* + (1 -s)Cag(pcp)*g*] Ox* 

I , Dg-] , Bo 0 2 T* "* 
= s+(l--s)(pcp)g,~J(pcp),(~el) ~ (3x .2 + ~ (7) 

where the normalized length, time, temperature, and 
pressure and the dimensionless parameters are 

xBo tBo 2 
x * = - - ,  t* (8) 

(Ke)'/2 (Ke),,2p, 

T-T~ T-T~ 
T *  - - (9 )  

TF,sa t -T i  A T  

P~* = - ~ \ T /  (10)  

Cat = #lUl Gag = pgUg (11 ) 
ff ff 

pluiK ~/2 pgugK~/2 
Rel Reg - 

Yl Ilg 

Bo _ (Pl--Pg)gK BoI _ plgK 
ff ff 

(12) 

Bog - pggK p* = P~ (13) 
p, 

(PCO~ (pc.)*- (pCp)~ (pCp)~, = (pCp)g 
(pc.)*= (pc.). (pc.)~ ipcp), 

(14 )  

/~* = P-Zt (Pel)m - -  (K~:)I /20" Ja  - t - 'p lAT 1 
ttg D,pl Ai,g (flcp)~* " 

(15) 

The scaled liquid saturation S is defined in equation 
(5). The modified Prclet number (Pe0m is based on 
the total axial diffusivity and the square root of the 
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absolute permeability,  and AT is the difference 
between the initial temperature and the saturat ion 
temperature evaluated at front pressure. For  the 
upflows, the sign of  the gravity term is changed. 

Upstream region, 0 <~ x* ~< XF--6~g. In this region 
the liquid remains in the pores after the passing of the 
front and is considered immobile ;  no phase change 
occurs and the capillary pressure is assumed constant.  
Then we have 

~t*= t/g'*--0,-- Ul = 0 (i.e. Cal = 0 )  

Ug = Ug.o (i.e. Cag = Cag.o) 

p* p * - p *  = constant,  T* * = = Ts,,(pg ). (16) 

Since p* = p * - p *  is constanL subtracting equation 
(3) from equation (4) will produce 

0p* _ 1 _ Cag,0 ( ~ g  __~ ] CEReg o 
* =  B o  + (s 

(17) 

Equat ion (17) is used to determine the continuous 
but  immobile liquid saturat ion Sire = S~m(X*), and, as 
evident, this distr ibution depends on the ratio of the 
Bond and capillary numbers. When there does not  
exist a real positive solution for s,~, then it is assumed 
that  S~m = S,r. As will be shown, this is the case for the 
downflow. However, for the upflow S~m varies with x* 
starting from S~r at the first transit ion point x*.~ and 
increasing monotonical ly  until the second transit ion 
point x*2. Further ,  the saturat ion gradient  (i.e. the 
capillary pressure gradient) is negligibly small. 

Two-phase region, x * -  6~ <~ x* ~< x*. In this region, 
both the liquid and vapor  are mobile, and no phase 
change occurs : 

" * = 0  T * =  1 (18) n~ = n~ 

The propagat ion  velocity of the condensation 
front can be regarded as the pore velocity of  
the liquid at the front. Using a moving coordinate  
system based on the condensat ion-front  speed, i.e. 
x* = x*--(u*/Bo)t* (where u* = uvl6/a), equations 
(1) and (2) are rewritten as 

~x* (Cal - csu*) = 0 (19) 

0 
Ox* (~*Cag + esu*) = O. (20) 

Using Ca~ = eu* (i.e. u~ = e.Uv) and p*Cag = 
I~*Cag.o-eu* (i.e. ug = ug.o--euv ) at the front, where 
s = 1, the solutions to the above equations are 

Cal = ~su* (21) 

It* Cag = #* C a g , o  - -  ~;SU*. (22) 

Writ ing the capillary pressure in terms of the Leverett 
J-function, the liquid saturat ion distr ibution is deter- 
mined from the following equation, which is derived 
by subtracting equation (3) from equation (4) : 

c~S 

Cagi(~rgrg CEReg\ Ca,(K~ ~ CeRej,  Bo ~] 

where 

dS ] 

(23) 

= - -  = J(S) (24) 
o- 

J(S)  = 1 . 4 1 7 ( 1 - S ) - 2 . 1 2 0 ( 1 - S )  z + 1 . 2 6 3 ( I - S )  ~. 

(25) 

The boundary  condit ion for the scaled liquid satu- 
ration is S = 1 at the condensation front. 

In the two-phase region the scaled liquid saturat ion 
increases monotonical ly from Sc at x~* = - 6 ~ *  to 
S = 1 at the front, where S: (as discussed in ref. [7]) 
is the critical liquid saturat ion and is obtained by 
imposing the condit ion of a zero liquid saturat ion 
gradient, i.e. dS/dx* = 0. This corresponds to setting 
the numerator  of  equation (23) equal to zero. In the 
second term in the numerator,  the relative per- 
meabilities Krj and Kr~ are propor t ional  to the third 
and sixth powers of  liquid saturation, respectively, 
while the liquid velocity u~ (i.e. Ca 0 is propor t ional  
to the first power of the liquid saturation. Since the 
magnitude of  the second term in equation (23) 
increases with a decrease in the liquid saturation, the 
magnitude of  the critical absolute liquid saturation is 
always greater than s~r. 

Condensation Jront, x * =  x*. At  the front, the 
energy released due to phase change is transferred to 
the condensed liquid, i.e. 

Bo ,?;T*[ 
Ja(pcp)l .~... I = p*(#*Ca~.o-eu*). 

(Pel)m ~xi 1~w=0- 

(26) 

Through the integration of equation (32) given below. 
this heat flux is also given through 

Bo ? T* I 
(1 - e ) u * - e ( p c v ) * A C a  I (Pel)m (PCv)* ~'x* " 

(27) 

The second term on the left-hand side of  equation (27) 
represents the sensible heat of  the condensed liquid : 
ACa, is determined from equation (31) below. Then 
Cag.o (i.e. Ug.o) is determined from equations (26) and 
(27), which give 

p*(It*Ca~.o-~u*) = Ja[(1--e)u*--s(pCp)*ACaL]. 

(28) 

Liquid region,, x* ~< x* --~-< ~rm~'~*±~*- In the liquid 
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region the porous medium is completely saturated 
with the subcooled liquid, and we have 

s = l ,  ~ i*=n*=0 ,  /~,=/&i. (29) 

The thickness of the liquid region 6", which begins at 
x~, is determined from the total mass balance and is 

1 --a fi~ 6"= J a x * - ~ -  - sdx*.  (30) 

The pore liquid velocity is the sum of the front velocity 
and the rate of increase in the thickness of the liquid 
region. Then, the superficial velocity u~ (i.e. CaO and 
ACaL are determined from 

( Ca, = ~.(u* + ACa,) = e. u* + ff f i  ] 

(1- ,ofl o ) = eu* 1 +Ja  sdx* (31) 
UF* Off 

The energy equation is also transformed to the moving 
coordinate system and gives 

{ - [(l  - ~) + ~(p%)*]u* 

aT* Bo ~2T,  (32) 
+ (pCp)*Ca,} ~ = (pCp)* (Pe,)m #x* 2" 

Integrating this for 0 -%< x* ~< m and using the zero 
gradient conditions in the far-field gives equation (27). 
The solution to equation (32), subject to the boundary 
conditions T* = 1 at x* = 0 and T* + 0 as x* + 0% 
is 

T* = e x p { - - ( P e , ) ~ I ( 1 - - e ) + e ( p C p ) *  

x ( 1-eja g u*lOot* (33) 

The total axial diffusivity D~ is related to the liquid 
P6clet number Pel and the effective conductivity k¢ 
through the empirical relation [10, 11] : 

Di ke Ul R 
~x~ = k7 +0.5Pe, Pe, = --~1 (34) 

where aj is the thermal diffusivity of the liquid and R 
is the radius of the particle. The effective conductivity 
used is the empirical relation of Krupiczka [10, 12]. 

Downstream region, X*F + 6* <~ X* ~< X*. There is no 
liquid in the downstream region, and at x* = x* +6* 
the gas velocity is assumed to be equal to the liquid 
velocity. This region is described by 

I'~g @ -~" 0 Ug = UI(X* : XF@-{- 61 ~) 

(i.e. Cag = Ca,) Krg = &V = 1 

p * ( x *  + 6")  = p*(x* + 6")  

(i.e. no meniscus-curvature effect) #g = p~, pg = Pa' 
(35) 

2.3, Numerical integration 
Since the front speed uF is not known a priori and 

the thermal and hydrodynamic aspects of the problem 
are nonlinear and coupled, UF is obtained by a numeri- 
cal iteration. At a front location 0 ~< x~ ~< x*, first a 
guessed value of u* is used and then the scaled liquid 
saturation in the upstream region just behind th~ two- 
phase region is obtained from equation (17). As men- 
tioned before, when no real positive solution qxists, 
the absolute value of the liquid saturation is taken 
as sir. The scaled critical liquid saturation Sc is then 
determined from setting the liquid saturation gradient 
equal to zero in equation (23) with Ca~ (i.e. u~) and 
Cag (i.e. Ug) from equations (21) and (22). Among the 
roots, the largest value of  Sc is used. Then, using this 
Sc as the initial guess, equation (23) is numerically 
integrated using the Runge--Kutta method along x* 
until the liquid saturation reaches the value of Unity. 
To avoid problems associated with numerical trunc- 
ations, a value just slightly larger than S¢ is used in the 
initial-value numerical integration. The region behind 
the front, from the location where ( 1 - S ) / ( 1 - & )  = 
0.99 to the location where S = l,  is defined as the 
two-phase region. In the liquid and the downStream 
regions, the absolute liquid saturations are eqiaal to 
unity and zero [except we u s e  Krg = (1 - S) 3 = 1 in  the 
downstream region], respectively. The relative per- 
meabilities in each region are determined fro m the 
liquid saturation distributions. Further, the liquid- 
and gas-phase velocities, u~ (i.e. CaO, and Ug and Ug.o 
(i.e. Cag and Ca,.o), are found in terms of the con- 
densation-front speed u* through equations (21), (22), 
(28) and (31). Then, the value of UF is updated, solving 
equations (3) and (4) using the boundary conditions 
p* = p* at the inlet and p* = 0 at the exit. Note that, 
in order to avoid the singularity at the front, iwhere 
S = 1, equation (4) is integrated up to the location 
where S = 0.95. The convergence criterion for u* is 
taken as the difference in its magnitude between any 
two successive iterations, and a converged solution is 
found when this is less than 1% of the current mag- 
nitude of uv. Using the converged u* and the satu- 
ration distributions, the temperature distribution in 
the liquid region is obtained from equation (33). 

The absolute permeability is estimated from the 
Carman-Kozeny equation, and the thermophysical 
properties used are listed in Table 1. In comparing the 

Table 1. Thermophysical properties used in computations 
[13] 

C E 0.55 /-~1 0.28x 10-3N Sm 2 
cp~ 4186Jkg IK-I  #b 0.96×10-3Nsm z 
K 3 x 10-turn 2 /~, 1.85 x 10 s N s m--2 
k~ 0.656 W m- l p~ 1.16 kg m- 3 
Ailg 2.257x106Jkg -I p, 0.6kgm 3 
R 250/~rn p~ 958 kg m 3 
AT 80K (pcp)~ 3.149x106Jm 3K 
e 0.40 a 0.0589 N m- 
/~g 1.2x 10 5Nsm-2 



1382 K. HANAMURA and M. KAVIANY 

Bypass 

I Regulator 
;Superheater 

<) 

Pressure 

g 450 nun 

650 mm I 

100 mm 
~--~ [Thermocouples 

P l ' c ~ s u r e  

Transducer 

I Packed ~ ~  (<~) Steam 

Column of 
Glass Beads Condensate 
d = 0.5 mm _~ 

Fig. 2. A schematic of the experiment showing the downward 
steam flow, the upstream superheater, the location of 
pressure transducers and thermocouples, and the down- 
stream phase separator. For upward steam flow the upstream 
superheater and other accessories are moved to the bottom 

of the packed column. 

another further downstream, and the pressure history 
at these locations is recorded. 

In order to prevent any condensation prior to 
arrival into the packed bed, the steam from the gen- 
erator is flown through the bypass line (as shown in 
Fig. 2). The steam is then superheated using a heater 
to about 10 K above the saturation temperature (at 
the inlet pressure). Then, this steam is flown to the 
packed column such that at the entrance it is close to 
the saturated state. The condensate flow is measured 
at the column exit, and the flow of dry air is used for 
a complete drying of the column at the end of each 
experiment. 

Both, the down- and upward steam flows are con- 
sidered in order to examine the effect of gravity on the 
front structure and the propagation speed. For the 
upflow, the superheater and other accessories are 
placed at the bottom of the column. In order to esti- 
mate the heat losses from the glass tube, the exper- 
iments are performed with and without an insulator 
placed on the tube. 

The porosity of the bed is determined using the tube 
inner volume, the mass of the glass particles, and their 
density. The porosity is also measured by a nearly 
complete saturation with water and a very close agree- 
ment is found, i.e. the irreducible nonwetting-phase 
saturation S~r.e,, is negligibly small. The irreducible wet- 
ting-phase saturation s,~ is measured using a packed 
column consisting of a stainless steel tube of 25 mm 
inner diameter and 600 mm length and the same glass 
particles. The measured value, S,r = 0.1, is accurate to 
within 10%. 

prediction with the experimental results, the volu- 
metric heat capacity of the packed bed is modified by 
including the volumetric heat capacity of the con- 
taining glass tube. This is done multiplying the former 
by a factor of 1.64, which is obtained from the volume 
averaging. 

4. RESULTS A N D  DISCUSSION 

For the downflow of steam, the predicted axial 
pressure distribution (for three different front 
locations) is shown in Fig. 3. The predicted thicknesses 
of the two-phase and liquid regions, 3~* and 3", are 
also depicted, Note that the front speed decreases 

3. EXPERIMENT 

Spherical glass particles with an average diameter 
of 500 ~m are packed in a Pyrex tube of 63 mm 
inner diameter, 76.2 mm outer diameter, and 650 mm 
length. A schematic of the experiment for the down- 
flow of steam is shown in Fig. 2. Temperature is 
measured every 100 mm along the axis and at the 
center of the bed using thermocouples. The average 
propagation speed of the condensation front uv is 
determined from the elapsed time measured for the 
travel of the front (marked by a prescribed tempera- 
ture between T, and T~) between adjacent thermo- 
couples, At 400 mm from the entrance, the tempera- 
ture is also measured at one-half the distance between 
the center and the surface to verify the one-dimen- 
sionality of the front. The pressure is measured by 
transducers, one located at the top of the column and 

7 -  

22 

D o w n f l o w  

Po = 6 . 8 ,  Ja = 0.117,  Bo = 4 .75  x 10-S 

0 - -  x; x; x;i 

1 2 
x~ x~ 

Fig. 3. Predicted scaled axial pressure distribution tbr three 
different front locations. The predicted thicknesses of the 
two-phase and liquid regions are also shown. The results are 

for the downflow and p* = 6.8. 
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Downflow 9.6 

3 6.8 30 
1.6 
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~ 2 .  k~  Upn°w [ . . . . . .  1.6 .20 
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0 , , "L ,~" • ":~ A" ~ , v ,  0 
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Fig. 4. Predicted and measured variations of the dimensional 
and normalized front speed with respect to the scaled front 
location for the up- and downflow and for several inlet 

pressures. 

monotonically with x*. This is evident in Fig. 4, where 
the predicted and measured variations of u* are shown 
with respect to x* for both the down- and upflow and 
for several inlet pressures. As shown in Fig. 3, for 
p * - - 6 . 8  the pressure drops significantly within the 
upstream region, where the vapor flow velocity %o is 
approximately 110 times larger than uF. The results 
are for Ja = 0.117, corresponding to the experimental 
condition. In the two-phase region, - Op*/Sx* is larger 
than that in the upstream region. However, because 
6~* < x* for the conditions shown, the corresponding 
pressure drop is much smaller. As a result, u* is mainly 
determined by the pressure drop within the upstream 
region. With this pressure drop increasing, Cag.o (i.e. 
%o) and u* decrease as x* increases. Further, the 
thicknesses of the two-phase and liquid regions 
increase with x* (the pressure drops in these regions 
have only a secondary effect on u*). Consequently, as 
observed in Fig. 4, u* decreases with increasing dis- 
tance from the entrance under the condition of a con- 
stant inlet pressure. Over a wide range of inlet 
pressures, the experimental results are in good agree- 
ment with the predictions (even for small x*, where 
u* changes significantly). For  the downflow and 
p* -- 1.6, the predicted results for 0.52 < x* < x ' a r e  
not shown, because in the liquid region the gravity 
force exceeds the sum of the viscous and inertial forces 
in equation (3) and the liquid flow is expected to 
become unstable. In the experiments, a fingering liquid 
flow (with the fingers having a velocity higher than 
the front speed) is observed in front of a thin liquid 
region. However, in all the experiments, the con- 
densation front appears as one-dimensional. Since the 
enthalpy of the steam flow is much larger than the 
heat loss to the tube periphery, the effect of this heat 
loss on u* is negligibly small. 

Figure 5 shows some typical distributions of the 
temperature, liquid saturation, and pressure (gas- and 
liquid-phase) around the condensation front, where 
the abscissa is the moving coordinate x*. The numeri- 
cal results for this front structure are for a downflow, 
x* = 2.17, and p* = 6.8. The temperature distribution 

1.2 J :~J- I ~ ~, L 
ULostream Two-Phase Liquid =, 

1.0 Kegion [ Region o Region uz . . . . . . . . .  ~ - . )  . . . . . . .  ~ . . . . . . . . . .  

' Down flow 
!* 1,30 1 Normalized p~= 6.8 

0.8- ° 2.17 J Measured x~= 2.17 
Temperature ]a = 0.117 

"~ 0.6 t Bo=4.75x10" 

~'~ 0.4 ~ ]  T* 

i 
-0.02 I -0.01 0 0.01 

Fig. 5. Predicted axial (in the moving coordinate x~*) dis- 
tributions of the normalized temperature, liquid saturation 
and gas- and liquid-phase pressures. The results are for the 
downflow and x~ = 2.17. The results for the temperature at 

x* = 1.30 are also included. 

for the same condition, but for x* = 1.30, is also 
depicted. The normalized temperature, normalized 
using the initial temperature and the saturation tem- 
perature at the front, drops rapidly within a short 
distance in the liquid region. Note that the measured 
temperature is averaged over the width of the thermo- 
couple junction (diameter of about 0.5 ram). A g o o d  
agreement is found between the experimental and 
numerical results. The spatial origin in the exper- 
imental results is adjusted to follow the numerical 
results in the liquid region, because, due to the ismall 
pressure variations around the front, the exactl front 
location cannot be determined experimentally. A 
direct comparison between the experimental and 
numerical results is not made for the case x* 
approaching zero, because the front speed is too large 
for an accurate transient measurement of tempera- 
ture. Note that a quasi-steady propagation is assumed. 
In the transformation to the moving coordinate 
system, the variation of u* with time can be indluded 
a s  

~x* Ou* t* ex* u* Ou* t* 
- 1 - ( 3 6 )  

Ox* •x* Bo Ot* Bo ~?t* Bo" 

The difference between the spatial temperature dis- 
tributions obtained with and without this valliation 
is only about 10% (at most). This close agreement 
between the experimental and predicted results indi- 
cates that the assumption of a quasi-steady state 
behavior at any front location is rather justifiable. 
For the downflow, equation (17) has no real positive 
solutions (for any ratio of Bo to Cag.o). In the two- 
phase region, the absolute liquid saturation inqreases 
sharply from that close to the critical liquid satul'ation 
to unity. As mentioned in Section 2.2, the secontt term 
on the right-hand side of equation (23) increases with 
a decrease in liquid saturation. As a result, the Critical 
liquid saturation is not equal to the irreducibleiliquid 
saturation, i.e. there is a saturation jump at the ibegin- 
ning of the two-phase region. As the liquid saturation 
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Fig. 6. Pressure histories at the entrance x* = 0 and at 
x* = 1.95 (distance into the packed column). The results are 

for the downftow and for three different inlet pressures. 

increases, the gas-phase pressure drastically decreases 
along the flow direction. The liquid-phase pressure is 
lower than the gas-phase pressure by the magnitude 
of  the capillary pressure p*. 

Figure 6 shows the pressure history at the entrance 
(x* = 0) and at x* = 1.95 for the downflow and for 
three different inlet pressures. The normalized 
pressure at x* = 1.95 is nearly equal to zero as the 
downstream region passes. As the liquid region passes 
through x* = 1.95, the predicted pressure increases 
almost linearly with time. The experimental results 
do not clearly show such a linear pressure rise. The 
pressure rises rapidly after the passing of  the front. A 
similar pressure rise is found as the two-phase region 
passes. After  the two-phase region, the upstream 
region passes, where the pressure also rises with 
respect to time. A good agreement is found between 
the predicted and experimental results. Note  that the 
asymptote for x 4 = 0 will be p*(x*, t* ~ c~) = p*. 
Although initially the inlet pressure in the experiments 
is lower and varies with time as compared to that 
assumed in the analysis, the measured u* is in a good 
agreement with predictions, as shown in Fig. 4. 

Figure 7 shows the predicted axial distribution of  
the liquid saturation for various front locations and 
for the upflow with p* = 1.6. Figure 8 shows the pre- 
dicted axial variation of  the thickness of  the liquid 
and two-phase regions, 6*and 6,*, for both the up- 
and downflow and for several inlet pressures. The 
measured variation 6" for the downflow and p~' = 
6.8 is also shown. For  the downflow, the liquid satura- 
tion in the upstream region is constant, i.e. s = S~r, as 
shown in Fig. 5. As a result, 6* increases almost 
linearly with x*, as shown in Fig. 8. The predicted 
6* for p* = 6.8 is in good agreement with the exper- 
imental results (obtained through visual observations 
and by measurement of  the accumulated amount  of  
the condensate flow). For  the upflow, the liquid satu- 
ration in the upstream region is maintained at s,~ for 
u*/Bo higher than a critical velocity (equal to 0.177), 
which occurs at a location referred to as the first (i.e. 
the discontinuous irreducible to continuous immobile 
liquid saturation) transition and corresponds to 

x; 

~ s j  Upflow 
G ~'] ~'~i p ; =  1.6, Ja = 0.117, Bo = 4.75 x 10 -5 

0 ] Sir 

0.5 1'.0 1.'5 210 2.5 
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Point xdl  i '  

Sir ~ ' 

f ' 2'.0 0.5 1.0 1.5 2.5 

x; 

Sir _~_ 

0.5 1.0 1.5 2.0 2.5 

' ' o n d  F 
I ] Transition / 

I 0 . . . . . . .  
0.5 1.0 1.5 2.0 2.5 

x* 

Fig. 7. Predicted axial distributions of the liquid saturation 
for the upflow and for various front locations. The results 

are forp* = 1.6. 

0.2 , i 5 F ' o 

Ja = 0.117, Bo = 4.75 x I0" / 

- - ' - -  Zg / (Downflow) 

o 8~ (Downflow . 4 , /  
, ~ Experiment, / -  

p: = 6.8) / p; =~.6 
~ 0.1 / .~ (Upnowl 

~ U P f l ° w ) k  N p*=6.8 

0 ""-" 
0 ! 2 

Fig. 8. Predicted axial variation of the thicknesses of the 
liquid and two-phase regions for the up- and downflow and 
for several inlet pressures. The measured variation of the 
thickness of the liquid region for the downflow and 

p* = 6.8 is also shown. 

Bo/Cag,o = 1.18. As shown in Fig. 9, Bo/Cag.o, which 
is independent of Ja, increases with Bo, because of  the 
increase in the significance of  the inertial term. As 
Bo --. O, the asymptote will be Bo/Cag.o = 1. After the 
front passes through this first transition point xtr.~, the 
liquid saturation in the upstream region begins to 
increase with increase in x*. This saturation distri- 
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Fig. 9. Predicted critical ratio of Bo to Cag,o, marking the 
transition from a discontinuous irreducible to a continuous 

immobile liquid saturation. 

bution, S,m = Sim(X~) ,  is determined from the balance 
between the gravity force and the sum of the viscous 
and inertial forces in equation (17). Then, as shown 
in Fig. 8, the thickness of the liquid region begins to 
decrease and eventually the liquid region disappears 
at a location referred to as the second transition x*2 
(where 6" = 0). The numerical integration is halted 
at x*2. Therefore, for the upflow, as observed exper- 
imentally, no liquid region passes through the top end 
of this packed column. The thickness of the two-phase 
region increases monotonically with increase in x*, 
because the capillary force becomes dominant as u~ 
decreases. As shown in Fig. 10, the location of first 
and second transition, x* a and x*.2, are proportional 
to 1.28 and 1.78 power of P0*, respectively. The first 
transition point x~*, is independent of Ja, while x*2 
increases with Ja and this has a dependency to a power 
of 1.26. The distance between xmt* and x*2 decreases 
with the decrease in p* and then disappears when 
pg' < 4.2, for Ja = 0.117. 

Figure 11 shows the predicted and measured vari- 
ation of u~/Bo with respect to x*Ja/p* for the upflow 
and downflow, where the inlet pressure in the exper- 
iment corresponds to that presented in Fig. 4. As 
observed in Fig. 11, u~/Bo is a function of the newly 
scaled location, i.e. x*Ja/p*. 

For the downflow, the asymptotes for x*Ja/p* ~ 0 
and oo correspond to the Darcean and non-Darcean 

5 -  L i , , i l l  i i L I I ,h 

"~  1 .  x ; 2 =  1 2 ~  

0 .5  
"~ ,{/"~a,  = 0.ssp;a.28 

Extrapolation 
:a  = 0.117 

0.1 
015 . . . .  ~ ' ' ' ~ " 1 0  

p; 

Fig. 10. Predicted variations of location of the transition 
from a discontinuous irreducible to a continuous immobile 
liquid saturation (the first transition, x'a) and location 
marking the disappearance of the liquid region (the second 

transition, x~.2). 
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Fig. 11. Predicted and measured variations of the normalized 
front speed with respect to the scaled front locatiqn for 
the up- and downflow and for several inlet pressured. The 

Darcean and non-Darcean asymptotes are also shown. 

(or far-field and near-field) regimes, respectively. For 
these the conditions of 6~ = 6*= 0 are impose d and 
the Darcean and non-Darcean asymptotes are found. 
For the Darcean to non-Darcean transition regime, 
using a second-order equation for u*/Bo, a curveffitted 
correlation is found. Then we have 

u~* 
Bo 

1 
(x~Ja~ 

x*Ja 
O . l < - -  

p *  

Darcean regime 

4 a 2 C  2 ]1/2 
--al + a2 + {x*Ja~--~| 

l / 1  

2a2 C] C2 

x*Sa 
0.002 < p~- < O. 1 

transition regime 

1 x*Ja 
- -  < 0.002 /x?Ja'O/2 p* 

C'C2~,P~-~*,) non-Darcean regime, 

where 

(37) 

p*(1-e)  ~ ( Reg)~Bo Ja] C I  = ~ g ~  C 2  = C E  1:2 

L(I - - S i r )  J 

(Reg)m (ff/#g)pgK]/2 a, = 1.16 a2 = 6.56. 

(38) 

In equation (37), u*/Bo is inversely proportional to 
x*Ja/p* in the Darcean regime, while it varies with a 
- 0 . 5  power of x'~Ja/p* and with (Reg)mBo Ja in the 
transition and non-Darcean regimes. As shown in Fig. 
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l l, for low inlet pressures there is a small deviation 
from the correlation in the transition regime. 

For  the upflow, as x*Ja/p~ ~ O, u*/Bo approaches 
the results for the downflow. In the Darcean regime, 
u*/Bo is below the asymptotic value, because of  the 
decrease in the relative permeabilities (by the continu- 
ous, immobile liquid saturation s,~) in the upstream 
region. Although not attempted, it is possible to seek 
a correlation for the upflow by including inverse func- 
tions of  the third and sixth powers of  S~m in the viscous 
and inertial terms, respectively. 

5. S U M M A R Y  

Under  a constant injection pressure for one-dimen- 
sional steam flow into a lower temperature, dry porous 
medium, the condensation-front  speed and liquid 
saturation distribution in the condensate region have 
been examined theoretically. A quasi-steady behavior 
is assumed, and the existing models are used for the 
volumetric viscous and inertial forces. Four  different 
regions and a condensation zone are defined. The 
dimensionless system parameters of  the problems are 
Ja, Bo,p*,  and the scaled thermophysical properties. 
The dimensionless front speed u* or the front location 
x~ are found for the down- and upflow of  steam. 

For  the downflow, a liquid region is present and 
increases in thickness with the distance from the 
entrance. The steam flow rate is initially high, and, 
therefore, the deviation from the Darcean flow 
behavior is significant for this initial period (or for the 
region affected during this period). For  the upflow, the 
liquid region gradually disappears, and the upstream 
region will contain a transition from a discontinuous 
to a continuous but immobile liquid saturation. The 
experiments confirmed these predictions for the 
upward and downward flows. 

For  the downward flow, the front speed is found in 
a closed form as a function of  the distance from the 
entrance for the Darcean (far-field) and non-Darcean 
(near-field) regimes and correlated for the transitional 

regime, For  the upflow, the location of  transition from 
the irreducible to immobile liquid saturations and the 
location of  the disappearance of  the liquid region are 
also correlated as functions of  the dimensionless sys- 
tem parameters. 
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